
Supplementary Material : Deep-learning-driven end-to-end1

metalens imaging2

Joonhyuk Seo1,†, Jaegang Jo2,†, Joohoon Kim3,†, Joonho Kang4,†, Chanik Kang1,3

Seongwon Moon3, Eunji Lee5, Jehyeong Hong1,2,4, Junsuk Rho3,5,6,7,8,∗,
1
, and Haejun4

Chung1,2,4,∗,
2

5

1Department of Artificial Intelligence, Hanyang University, Seoul, 04763, Republic of Korea6

2Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea7

3Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH),8

Pohang, 37673, Republic of Korea9

4Department of Artificial Intelligence Semiconductor Engineering, Hanyang University, Seoul, 04763,10

Republic of Korea11

5Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang,12

37673, Republic of Korea13

6Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang,14

37673, Republic of Korea15

7POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673,16

Republic of Korea17

8National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea18

†These authors contributed equally to this work.19

∗These authors are corresponding authors.20

October 8, 202421

Contents22

1 Metalens fabrication 223

2 Metalens imaging system and data acquisition setup 324

3 PSF measurement setup and MTF calculation 425

4 Statistical train-test inconsistency 526

5 Pattern artifact resulting from adversarial learning scheme in RGB space 727

6 Details of Architectures 828

7 Details of Performance Metrics 929

7.1 PSNR and SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

7.2 Assessment in Spatial Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 931

8 Additional Experiments for Restored Image Quality 1032

9 Outdoor Image Restoration 1133

1



1 Metalens fabrication34

The metalens developed in this work comprises a two-dimensional rectangular array of meta-atoms,35

each featuring a nano-slab and an arbitrary rotation angle, forming a Pancharatnam-Berry phase-based36

metalens. The dimensions of the nano-slabs, which are 70 nm wide, 380 nm long, and 900 nm high,37

were established following the deposition of a 23 nm thick titanium dioxide thin film on the imprinted38

resin structures. The design parameters, including the width, length, height of the slab, and thickness39

of the titanium dioxide thin film, were systematically optimized to maximize the focusing efficiency.40

The metalens focuses light with the polarization-dependent transmittance of the meta-atom, the Jones41

matrix of which can be expressed as:42

J =

[
tl 0
0 tt

]
(1)

where tl and tt are the complex transmission coefficients of the meta-atoms when the electric field43

polarization is aligned along the longitudinal or transverse directions of the slab, respectively.44

The Jones matrix for the rotation angle θ of the nano-slab is45

T = R(−θ)JR(+θ) =

[
cos θ sin θ
− sin θ cos θ

] [
tl 0
0 tt

] [
cos θ − sin θ
sin θ cos θ

]
(2)

where R is the rotation matrix of the rotation angle θ, and T is the transfer matrix of the meta-atom.46

For incident Left-handed Circularly Polarized (LCP) light, the transmitted light can be derived as a47

linear combination of LCP and Right-handed Circularly Polarized (RCP) light:48

T
1√
2

[
1
i

]
=

tl + tt
2

[
1
i

]
+

tl − tt
2

ei2θ
[
1
−i

]
(3)

The phase retardation of the RCP light can be precisely controlled by θ. The ideal phase distribution49

(ϕIdeal) at the exit plane of the metalens is defined as50

ϕIdeal(x, y) = −2π

λ

(√
x2 + y2 + f2 − f

)
(4)

where λ is the target wavelength of 532 nm; x and y are the spatial coordinates on the metalens;51

and f is the focal length, which was set to 24.5 mm for a numerical aperture of 0.2. Therefore, the52

orientation angle of each meta-atom at a point (x, y) is (ϕIdeal/2).53

To mass-produce the designed metalens on a wafer scale, we sequentially applied high-speed54

electron-beam lithography, ArF immersion scanning, nanoimprint lithography, and atomic layer de-55

position. The high-speed electron-beam lithography process (JBX Series, JEOL) was instrumental in56

patterning the photomasks of the metalenses. At this stage, the photomask contained a mask pattern57

for a singular metalens, which was insufficient for mass production. To rectify this, we transferred the58

photomask pattern onto a 12′′ Si wafer in an array format using an ArF immersion scanner (XT-1900Gi,59

ASML), thereby creating a master stamp with metalens arrays.60

Following this, we employed nanoimprint lithography to replicate the fabricated 12′′ master stamp61

at a significantly reduced cost. In the initial phase of nanoimprint lithography, we coated the prepared62

master stamp with hard-polydimethylsiloxane (h-PDMS) to achieve a high-resolution replication of the63

metalens, and subsequently coated it with PDMS to create a replica mold. After baking the replica64

mold at 80◦C for two hours, we separated the cured replica mold from the master stamp.65

We then applied a conventional imprint resin (MINS-311RM) onto the replica mold and covered66

it with an 4′′ glass wafer. Following the curing of the imprint resin under a pressure of 2 bar and67

UV-light irradiation, we formed a metalens pattern on the glass wafer by detaching the replica mold.68

To enhance the effective refractive index and thereby increase the efficiency further, we thinly coated69

the imprinted metalens with a high-index titanium dioxide film using atomic layer deposition.70
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2 Metalens imaging system and data acquisition setup71

Figure S1: (a) Schematics of the metalens imaging system. The metalens imaging system consists
of the metalens, the camera, and left- and right-handed circular polarizers. (b) Schematics of data
acquisition setup. (c) Spectra of the red (616 nm), green (541 nm), and blue (455 nm) pixels of the 85′′

monitor. (d) Spectra of the red (peaks at 640 nm), green (525 nm), and blue (457 nm) light-emitting
diodes (LEDs) used for the PSF measurements. (e) Metalens images obtained by capturing the red,
green, and blue mosaic patterns on the monitor.

The metalens imaging system incorporates our mass-produced metalens, a commercial camera (Basler72

acA5472-17uc) with an exposed imaging sensor and two left- and right-handed circular polarizers (Ed-73

mund Optics CP42HE and CP42HER). In addition, the polarizers can be expressed as stacks of a74

Linear Polarizer (LP) and a Quarter Wave Plate (QWP) because they are fabricated by laminating75

an XP42 LP sheet to a WP140HE QWP sheet. The roles of each optical component are shown in76

Fig. S1(a). The left-handed circular polarizer only transmits the LCP light to the metalens. As77

described in the metalens fabrication section, the RCP light transmitted from the metalens has the78

wavefront propagating to the focal point, while the LCP light has the same wavefront as the incident79
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light. The right-handed circular polarizer transmits only RCP light and blocks LCP light to remove un-80

focused lights. Finally, the linearly polarized light transmitted from the right-handed circular polarizer81

focuses on the image sensor.82

The planes of the circular polarizers and image sensor are aligned perpendicular with the optical83

axis of the metalens, which point towards the center of the image sensor. Figure S1(b) shows the data84

acquisition setup. The metalens imaging system is distant 2.6 m from the 4K 85′′ monitor (Samsung85

KU85UA7050F) with the optical axis perpendicularly pointing toward the center of the monitor. In86

addition, the distance between the metalens and the image sensor f0 is tuned to focus the center of87

the green pattern on the monitor as shown in Fig. S1(e). The spectra of the red, green, and blue pixels88

are shown in Fig. S1(c), which have peak wavelengths at 616, 541, and 455 nm, respectively. The raw89

metalens images were obtained by capturing the ground truth images displayed on the monitor.90

3 PSF measurement setup and MTF calculation91

Figure S2: (a) Optical setup for PSF measurement with zero viewing angle. (b) PSF measurement
setup with horizontal viewing angle θx.

The PSF was measured by capturing images of the collimated lights using the metalens imaging system.92

As described in Fig. S2(a), the red, green, or blue light from the LED with the peak intensities at 640,93

525, 457 nm (i) is spatially filtered and collimated by the 0.5′′ aspherical lens (ii, Thorlabs AC127-019-94

A), 20 µm pinhole (iii, Thorlabs P20CB), and 1′′ spherical lens (iv, LA1461-A). Before capturing the95

PSFs, the focal length f0 was set to focus the collimated light from the green LED, and the spectra of96

the LEDs are shown in Fig. S1(e). The PSFs with zero viewing angle were measured by matching the97

optical axes of the spatial filter and the metalens imaging system. The PSFs with non-zero viewing98

angles were measured by tilting the metalens imaging system in the horizontal direction as shown in99

Fig. S2(b).100

The MTFs are subsequently calculated using measured PSFs as [41],101

MTF ≡
∣∣∣∣∫ ∫

I(x, y) exp [−2πi(fxx+ fyy)] dxdy∫ ∫
I(x, y)dxdy

∣∣∣∣ (5)

where x and y are the horizontal and vertical positions on the image sensor; I(x, y) is the PSF; and102

fx and fy are the spatial-frequencies along the x and y axes, respectively. Defining the viewing angle103

as the angle between the optical axis of the metalens and the line towards the point light source from104

the center of the metalens, Fig. 2(d) describes the MTFs depending on fx with the zero fy.105

In Fig. 2(f), the metalens image’s blue channel is more blurry than the red channel, while the MTF106

of the blue channel is higher than the red channel in Fig. 2(d). The peak wavelength of the green107

light of the monitor is closer to 541 nm rather than 525 nm. Furthermore, the distance between the108

metalens and the monitor is 2.6 m. Thus, the focal length is set to focus 541 nm green light from a109

point 2.6 m away along the optical axis of the metalens. Additionally, the intensity distribution of the110

red light from the monitor has a peak around the 620 nm wavelength. As a result, the red channel111
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experienced less defocusing compared to the blue channel, which had more significant defocusing due112

to its spectral characteristics and the focal point adjustment.113

4 Statistical train-test inconsistency114

Figure S3: Statistical train-test inconsistency. (a-b) Probability density functions of global
average pooled features of training(red) and testing(blue) (a) without and (b) with TLC.

TLC PSNR SSIM LPIPS

HINet
19.378 0.609 0.493

✓ 21.364 0.641 0.456

NAFNet
18.447 0.559 0.519

✓ 21.689 0.642 0.440

Our framework
20.868 0.641 0.448

✓ 22.095 0.656 0.432

Table S1: Comparison of quantitative results from various models without and with TLC.

AP AP50 AP75

Ground truth 0.451 0.730 0.482
Metalens image 0.051 0.087 0.054
Our framework 0.386 0.646 0.397

Table S2: Comparison of quantitative results of object detection on the PASCAL VOC2007 between
ground truth images, metalens images, and restored images.

In natural image restoration studies based on deep neural networks (DNNs) [57, 58, 66], the channel115

attention module [67] leads to the exceptional performance of the restoration. Global average pooling116

(GAP) shrinks the given features in spatial dimensions to generate channel-wise statistics. However,117

GAP significantly degraded the train-test consistency because we used randomly cropped image patches118

as training data and full-resolution images (non-cropped) as test data, as mentioned in the main text.119

Figure S3 shows this statistical inconsistency at the training and test phases of NAFNet (baseline120

model). Specifically, Figures S3(a) and (b) show the probability density functions of the outputs of the121

GAP of the first channel attention module at the second encoder of the model for the metalens images.122
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The test-time local converter (TLC) [53] can significantly contribute to overcoming these issues. After123

applying TLC, the statistics in the test phase are similar to those in the training phase (Fig. S3(b)).124

Furthermore, TLC ensures this statistical consistency and significantly improves the image quality125

(Table S2).126
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5 Pattern artifact resulting from adversarial learning scheme127

in RGB space128

Figure S4: Pattern artifacts resulting from the adversarial learning scheme in RGB space. (a-b)
Results of image restoration on the test set using adversarial learning regularization in RGB space.
(c-d) Visualization of (a-b) in the frequency domain.

As mentioned in the main text, the implementation of an adversarial learning scheme in the RGB space129

for regularization results in restored images that exhibit pattern artifacts in the RGB space across the130

entire area (Fig. S4(a) and (b)) and the frequency domain (Fig. S4(c) and (d)). In particular, applying131

adversarial learning in the RGB space significantly improved LPIPS but drastically reduced PSNR132

and SSIM (PSNR : 21.48 versus 21.69; SSIM : 0.64 versus 0.68; LPIPS : 0.39 versus 0.44).133
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134

6 Details of Architectures135

136

Figure S5: Illustration of the discriminator in our study.

level 1 level 2 level 3 level 4

Encoder 2 2 4 8
Decoder 2 2 2 2
Bottleneck 12

Table S3: The number of blocks for each level of the proposed restoration architecture.

The proposed framework consists of a restoration model responsible for practical image restoration137

and a discriminator for adversarial learning. We employed [38] for the restoration model, which has an138

encoder-decoder structure. The encoder and decoder of the network are each composed of four levels.139

Table S3 shows each level’s number of blocks in the encoder, decoder, and bottleneck. Additionally,140

as shown in Fig S5, our discriminator consists of an input residual block and hidden residual blocks,141

with the number of hidden residual blocks set to 5 in our study.142
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7 Details of Performance Metrics143

7.1 PSNR and SSIM144

We use PSNR and SSIM, representative image quality metrics, to evaluate the images reconstructed145

by the proposed model. The PSNR is :146

PSNR(x, x̂) = 10 log10(
R2

MSE(x, x̂)
). (6)

Since MSE is a metric indicating the difference of pixel values, higher PSNR values indicate a better147

restoration performance. R is the maximum signal value of the ground truth image. However, PSNR148

is only an approximation to the human visual perception of the reconstruction quality because MSE is149

the pixel-level intensity difference between the reconstructed and ground truth images. Therefore, we150

use SSIM to accurately evaluate the visually perceived quality of the restored images. SSIM utilizes151

three elements in its evaluation: luminance, contrast, and structure between the reconstructed and152

ground truth images. The SSIM is :153

SSIM(x̂, x) =
(2µx̂µx + c1)(σx̂x + c2)

(µ2
x̂ + µ2

x + c1)(σ2
x̂ + σ2

x + c2)
(7)

In this equation, µx, σ
2
x and σ2

xy indicate mean of x, variance of x and covariance of x̂, x, respectively.154

7.2 Assessment in Spatial Frequency Domain155

We also introduce metrics to evaluate the restoration of lost spatial frequency information due to156

intense degradation in the Fourier domain. Spatial frequency information is entirely characterized by157

the magnitude and phase angle. Thus, we employ magnitudes’ MAE and cosine similarity as metrics158

in the spatial frequency domain. First, we transform the given ground truth and restored images from159

RGB space into Fourier space. Then, we derive the MAE and cosine similarity between the magnitudes160

of the transformed data. The MAE and cosine similarity are:161

MAEF (x̂, x) =
1

N

N∑
n=1

||F(x̂)| − |F(x)|| (8)

CSF (x̂, x) =
1

N

N∑
n=1

F(x̂n) · F(xn)

||F(x̂n)||2||F(xn)||2
(9)

In this equation, F is Fourier transformation.162
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8 Additional Experiments for Restored Image Quality164

Figure S6: Qualitative comparison between various methods including our integrated imaging system.

Red Green Blue

Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Metalens image 13.476 0.405 0.804 16.083 0.472 0.732 15.257 0.416 0.786
MIRNetv2 17.269 0.535 0.526 19.684 0.586 0.489 19.267 0.548 0.504
SFNet 16.963 0.545 0.497 19.345 0.596 0.461 18.982 0.560 0.475
HINet 20.197 0.624 0.439 22.887 0.674 0.408 21.935 0.625 0.426
NAFNet 20.690 0.626 0.433 23.146 0.677 0.4 22.031 0.623 0.418
Our framework 20.93 0.639 0.423 23.831 0.692 0.387 22.481 0.636 0.407

Table S4: Comparison of channel-wise quantitative assessments of various models.

Normal incidence 10.3◦-13.1◦ 13.1◦-15.9◦

Model PSNR SSIM PSNR SSIM PSNR SSIM

Metalens image 16.124 0.492 15.317 0.376 14.868 0.534
MIRNetv2 18.834 0.527 21.578 0.638 16.139 0.545
SFNet 18.389 0.534 21.459 0.652 15.015 0.534
HINet 20.841 0.63 23.317 0.684 19.724 0.597
NAFNet 22.748 0.638 23.183 0.679 19.824 0.606
Our framework 23.547 0.662 23.078 0.682 22.554 0.631

Table S5: Comparison of quantitative assessments of various image restoration models using upper-
right regions (100 Ö 100 pixels) corresponding to the specified incidence angles (10.3◦ - 13.1◦ and 13.1◦

- 15.9◦). Specifically, spatially dependent degradation is the most severe at angle range 13.1◦ - 15.9◦.
Additionally, we evaluate the center region (100Ö100 pixels) for assessment of normal incidence cases.

We conducted additional experiments to thoroughly analyze the performance of the proposed frame-165

work. First, we performed a qualitative comparison between the metalens images and the results166

restored by various baseline models, including our framework. As illustrated in Fig. S6, our frame-167

work more effectively captures fine details and produces more accurate color reproduction compared168

to other models. In particular, as shown in Table S4, our method consistently outperforms others169
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across all RGB channels, each corresponding to different wavelength regions. Moreover, both Fig. S6170

and Table S5 demonstrate that our framework exhibits significantly superior performance, particularly171

in the outer regions of the image, which suffer from severe degradation due to oblique incidence. No-172

tably, our framework yielded substantial improvements in image quality within the upper-right outer173

region (13.1◦-15.9◦), with an increase in PSNR by 7.7 dB, an enhancement in SSIM by 9.7%p, and a174

reduction in LPIPS by 20%p compared to the original metalens images. Furthermore, in comparison175

to NAFNet, which serves as the baseline for our framework, the proposed method achieved a 2.7 dB176

increase in PSNR, a 2.5%p improvement in SSIM. Although our framework exhibits marginally infe-177

rior performance at the specific incidence angle (10.3◦-13.1◦) than HINet [58], we highlight that the178

proposed framework maintains consistent performance across varying incidence angles.179

180

9 Outdoor Image Restoration181

Figure S7: Ground truth outdoor images, metalens images, and images restored by our model. The
images are affiliated with the test set data. The red and yellow boxes indicate local regions having
sharp edges, which demonstrate the restoration quality in high frequency.
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Figure S8: (a) The metalens imaging system is at the left while the conventional imaging system is
at the right, looking at the whole set. (b) Instance of data collection for outdoor scenes. (c-d) PSFs
of the conventional and metalens imaging systems, respectively. The scalebar is 500 µm.

We conducted training and inference on newly collected outdoor images to verify our framework’s182

learning capability. First, we composed a conventional imaging system using a commercial bulky lens183

system (HP Techspec 25mm fixed focal length lens) and a camera (Basler acA5472-17uc). Then, we184

positioned the conventional and metalens imaging systems in parallel, with their optical axes aligned185

and approximately 4 cm apart, as shown in Fig. S8(a). The focal lengths of the imaging systems are set186

to focus on a collimated 538 nm laser beam; the collimated beam is obtained by the PSF measurement187

setup in Fig. S3(a) where the LED is replaced with a 538 nm diode laser. The PSFs of the imaging188

systems are shown in Fig. S8(c) and (d).189

We acquired 109 pairs of images by simultaneously capturing outdoor scenes using the two imaging190

systems as shown in Fig. S8(b). We obtained ground truth images by cropping the raw images from the191

conventional imaging system with 5472×3648 resolution to 5472×3420 resolution and resizing them192

to 1280×800 resolution. Then, we gained corresponding metalens images by rotating the raw images,193

cropping them to 5118×3228 resolution, and resizing them to 1280×800 resolution. The parameters194

for rotation and cropping for the metalens images are optimized to maximize the SSIM between the195

metalens and ground truth images. We constructed a dataset with 98 training and 11 test samples196

from the 105 pairs of ground truth and metalens images and trained our framework.197

Figure S7 shows the metalens, ground truth, and restored images. Our framework exhibits signif-198

icant restoration quality for the outdoor images. However, the outer regions of the restored images199

exhibit blurs, color distortions, and incorrect edge details, showing lower restoration quality than the200

restored image from the monitor. We expect that the restoration quality of the outdoor images can be201

significantly enhanced by solid alignment between two imaging systems (conventional and metalens)202

and also by capturing diverse and numerous outdoor scenes.203

The relatively low restoration quality of the outdoor images may be attributed to the limitations204

of the training dataset. The accuracy of the training dataset may be diminished due to the slight205

changes in the optical alignment during the imaging system’s movement between shots. Furthermore,206

the insufficient diversity and quantity of the dataset may further reduce the restoration quality.207
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